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ABSTRACT

The relativistic oscillatory motion is studied by the method
of canonical transformation. Two types of relativistic oscillators
are considered: (1) relativistic harmonic oscillator, and (2)

relativ;stic demped oscillator. The transformations are performed

in a mathematical way according to an operational method of rei.l.ativia"-‘

tic perturbations conserving Hamiltonian formulism. " The ultimate
nature of the relativistic oscillation is analyzed.
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I. INTRODUCTION

Struble and Harris'l) have criticized Mitchell and Pope'st2)
_work on the rglativistic damped oscillator and have presented their
results on the same problem., However, the solution given by Struble ‘
and Harris does not permit a deeper insight i.ntothenamreofthq ‘
problem because it is assumed in a series form.

In this paper canonical transformations are offered for the .
analysis of the relativistic oscillatory motion. The sdvantage
of the use of canonical system of equations to treat this problem
is that solutions can be obtained in a certain desired form so
that the ultimate pa.ture of the relativistic oscillatory motion
is revealed. The method of canonical transformation, an adaptation
of the principle developed originally by Von Zeipel'?), confirms
the results obtained by Penfield and Zatskis“"), Mitchell and

Pope‘z). The Von Zeipel's method has been used with success in

. . PR
the study of motion of artificial satemtea‘s ). Its application to

this type of problem is apparently new,

(13 R.. A Struble and T. C. Harris, J. Math, Phys. 5, 138 (196&)

(2) T.%P. Mitchell and D. L. Pope, J. Soc. Indt. Appl. Math. 10, lp9 (1962) ‘
(3) H. Von Zeipel, Arkiv Astron. Mat. Fys. 11, 1 (1916)

fu; R. Penfield and H. Zatskis, J. Franklin Inst. asa, 121 (1956)

5) D.

Brouwer, Astron. J. 6k, 378 (1 ?59),
B. Garfinkel, Astron. J. 6k, 353 (1959);
G. Hori, Astron. J. 65, 22&6(1960), : :
Y. Kozai Astron. J. 67, (1962); o

P. Musen and A. E. Bailie, J‘. Geoph;ra Res. 67, nz; (1962)
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II. RELATIVISTIC EQUATIONS OF MOTION ' -
The three-dimensional form of Einstein's second law of motion

(6)
for a particle is

dpit = F, ,P.—..-/yg./(/— Ty

in which my is the rest mass, ﬂ/ the velocity of the particle, C the
velocity of light in a vacuum and F represents force.
If the motion of the particle 1s de;cribed. relative to the

inertial coordinate system in which the origin coincides with the

equilibrium position of the particle and the X-axis represents the

straight line on which it moves, the equations of oscillatory motion

are ¢

dpfit=—tha %), p=mtr-TJETE

where k is the spring modulus and r the damping constax}t. The
initial conditions assumed to be =4 and 2?'::09,1-. time = O .
If one introduces the Newtonian angular frequency £J= (" ﬁy/rzj{

the Newtonian damping coefficient ?:/ZZI’L and the charactez;i;stic

length a, equation (2) can be nondimensionalized by changing

" variable to ; .-;)’/a a nondimensional space variable and to

C G)f » nondimensional time. Using /0::&{///6 as the momentum

-(6) P. Havas, Rev. Mod. Phys 36, 936 (1961;)
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conjugates to q equation (2) becomes

dl+ (grexp)(/- P = o

' 2
where,(: ?/0) and./lt :(aw/c ) are independent small parameters.
In terms of the nondimensional variables the initial conditions
are Q=1 and p = 0 at Z = 0. Subjecting to these initial; condi-

tions a solution of equation (3) is desired..
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III. CANONICAL VARIABLES AND TRANSFORMATIONS
Consider the dynamical system to be perturbed by external
forces due to relativistic effect such that the canonical equations

describing the motion of the system are

_xf- 5 +X(/’7?)

0’{‘2’—”3; iy /;,2)

where H = H(p,q) is the Hamiltonian of the system, and X(f&i; 2)

and }f( /3 3/ iy ) are extern_é.l perturbing forces due to the
relativistic eff'ect.

A fundamental theorem in the transformation theory of
' theoretical mechanics is that a transformation of variables con-
serving the Hamiltonian formulism may be madé providing the

Hamiltonian does not have an explicit dependence on time. If an

_appropriate transformation method is used, the equations descri‘bing '

the motion of the system will remain canonical although of a .
different functional form of the Hamiltonian. '

‘I.et a transformation to new varmbles be given in the fom

/(/’f) = 4L

'.I.'he question is, under vhat c:l.rcumstances will the trans-
formation be canonicale-i.e., under Uhatxnixc\matanceg.:thejnew R

equations will be

%)

{5)

(6)
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This transformetion of variables can be done in the following

manner. Multiply equafions (4) and (5) Dby D/P/QL ‘, -'Bi/ oL

respectively and add. The sum is

(7.7 W A
@it ZZL*)%Z B/Z,Z*d; ZZ*Za/, ’Ya‘j

Since

] M D7 AL
zé = L2 oL

;%{1 EZJZ
ToL 47

and .
'BL 2P oL '

5[2 3 azaZZ] 9//* 7‘7 a'z o ;

It can be shown that the: Lagrangia.n 'bracket [ j L ] uals

- wity for a canonical transformation where the Hamiltonia.n is un- .

changed., Hence

(n

(8

-(9)4

(10)




T T e T

Comparing equation (11) with equation ({7) one obtains

r < o | a (
f—XalZszYzZ | o

If equations (4) end (5) are mutiplied by DF/DL, -9)7/31 R ,

respectively and similar operations are carried out the result is8 = iy

- “r

\ 7 : » T
‘5’:25{*}"52{_ o o an
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IV. RELATIVISTIC HARMONIC OSCILLATOR
The case of the relativistic oscillator without damping is a
relativistic harmonic oscillator. One obtains the equation of

motion by placing o{=0 in equation (3)
AP 3,0 — | S
;5+?*§/f5*“0 | | (14)

where terms of order /2 and higher are omitted. The appearances
of/t is a direct consequence of the relativistic perturbation of

the problem. The Hamiltonian of the Newtonian harmonic oscillator

is
fh =2 Prg) | o

and the solution of the Newtonian harmonic oscillator subjecting
to the initial conditions /D::O a.ndi: g, can be expressed in

the periodic form . ‘ .
.; 37:== 5?623(2?-22) . | : -
VP ==pse-e) N

By letting /=C -2 and the total energy of the Newtonian

(16)

14

system L == 532 s0 that equations (16)gre traq'stomed to

/ =3 Sl |

i . o P . i

(18)



and the canonical equaétions of the relativistic system are

i

A7 M ' |
A T 9P RTINS

éﬁ-——ai rEMPT ' “ (20

where

. / N | ' ) ' )

Upon differentiating equations ( 17) and (18), the results are

29 . 2 22
ﬁzgsloi“a‘/,z%

By substituting these results equations (12) and (13) becone

f ="z f&u/-— — A +/5/‘7 w¢/ e _‘22)“‘-

"’"'“/‘/’f - /§5/15§,¢(¢ﬁ;2/fﬁ%g0 'Vii’}:f; (23")'

Substituting equations (21), {22) and {23) in equations (7) and o

(8) one obtains

EC-{/% “"/ /5/%’ 7’/6/‘;54{/{ e (k)

; i
|




Therefore the solution of equation (1L4) is
7 =L *Cos §

where L and j ere given by equations (2 and (25).

The physical interpretation of these results is as follows.
The displacement after an interval 8‘2 . mey be determined from
| the Newtonian harmonic oscillator by considering that the amplitude
and frequency are time varying due 1o the relativistic perturbation.
The variation in fre‘quency is inherent in equation (24). The
variation in amplitude is given by equation (25). The results
also shows tha.t the amplitude of the relativistic harmonic oscil-
latory motion to have no secular terms. It does not increase or
decrease without bound but is represented by a constant plus
trigonometric terms having frequencies whicl} are multiples of the |

fundamental frequency of the system.

Taking the values averaged over one period, one obtains
P4

A, )
'-372’;,41/5 — / /é/{f

dC lave

. Substituting these average values in equation (26) in order

to obtain a first approximation to the solution, the result is-

A

l 9.

(25)

(27)
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Thus, referring to the definitions of q, Qo and 7* , the first
approximation to the solution of the relativistic harmonic oscillator

is
/Ylffv’.a. =Q &1/'(/’73‘;’/‘)“)‘{/ (28)

Equation (28) represents the relativistic harmonic osci;lation with
constant ampliﬁude and constant frequency.  The 'frequency is 3—2%1,“31388
than that of the Newionian harmonic oscillator. DPenfield and Zatzkisw)
arrive at the same result by using the energy principle in relativistic
dynamics.
V. RSLATIVISTIC DAMFED GSCILIATCR

Equation (3) describes the motion of the relativistic damped
oscillator. Further transformation of this equation procedes the
application of the canonical transformation. After suitable changes
of both independent and dependent variables, and a reideﬁtificati&n
of the parameters, the equation of motion assumes a form pa.rticulﬁrly

suited for the Von Zeipel's technique. : ' ..

Equation (3) is revritten . o

. W\
(S E

L)

Changing of the independent and dependent variables according

to
4

izilé’(f / 2 : (/-'S(j 37_ . 3
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Transition -

3pé-3da

3pg-3sc

0.25 2.399 | 2.387 2.403 2.304
1050 2.221 - 2.2k 2.235 S 2.229,
0.75 1.978 1.988 2.001 - 1.99% .-
- 1.00 1.761 1778 1.789 1.780
' 2.00 1.3% 1362 1.450 1.462
3.0 1.412 1.306 ,  1.649 1.7 |
x . %00 1.359 - 1.358 2.16 2.1/
1-360-580 ' ' ' ,
0.00____ 10,000
. 0.25 | 0.058 0.059 o
| 050 - T 0.106" 0.107
_ 0.75 SO 0k 0.236" T
. 1.00 P S Y ¢ Soam N\
E 2.00. 0.019 0033 .
3.00 L 0350 -0.34T
o8, v T 0796 -0.845 -
N L
' - - .. | _."" "‘.
N "
A N :
.\.\.\; X \ - R . "

R 1st Order
AB Dipole
Length -

0.00
0.25
0.50
0.7
1.00
2.00
3.00

400

0.00

lst Order ‘

Dipale
Velocity

‘Page 4 of 4 Pages

.TABIE II - CONTINUED -

2nd Ordexr
Dipole |

"-' Iength

172
1.726.
1.705
1.667
"1l.314
0.821
0.347

2nd Order
Dipole
Velocity’

1.7

L 1.730
- 1.710

‘1.671
1.357
0.786
0.217
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and identifying the new parameters
-z
. < <
. | é:::/‘l (/1-X) ;, A=((/-<
enables one to write equation (29) in the form

...AT

df; v ke ZEGp-4], )[W.); reaple”
FEapo fﬂf/f"“’

. # O(€) = O .
| (30)
P

| The neir Darameter ¢ couples the independent parameters u and a,
The restriction a < 1 ensures that ¢ will be smaller than u,- It
is to be noted that the eppearance of ¢ is a du‘ect consequence of

the relatz.vistic perturbation of the system . The" Eamiltonian of the

unperturbed system is

"/./7(3/ — _-—é(/?ij_ o o (32)

and the solution of the unperturbed system subjecting to the trans-

formed initial conditions Qi{0) = Qo1 and pa(0) = Agoy can be

o
t




expressed in the periodic form

g =g AT 4 21 Sim (7= 72)

f=fu Sen (7 7) 4 For Co3(T-72)

By letting 4 = T -~ To and the total energy L/J =2 (/f./l)&?a/

50 that equations (32) and {33) are transformed to

;, =,/ s + Aq/;f,f:ﬁb/
Y —7/,44 Sl + 2y Cosd

The canonical equations of the perturbed system are

__ O
/

t% \vi“*

where

In this expression terms of order ¢2 and higher T'&re omitted,

12

i !

e

Dot
L

(32)

(33)

(34)

- (35)

(36)

(37)

(38)



By differentiation {34) and (35) the results are
'9\_Z/-_
3L =F

oY — ( Cost A Susd jz
2L #4) }73

Substituting these results in equations (12) and (13), one obtains '

:::‘125éYEZJ%ﬁT;(QL:SZQi%é?EZ1f'C?ZAliaZAiaész‘;b(71,4:),qi52j;7.'

(cosh+45-0)" e——?AT
/L) Ji ‘

=-F¢feac ,rm/f.a )7 (/-sh) -l ra c’of/)

(Cstrasil)r (4.4 {zzt ) (Slral avﬂ’)(ﬁf/#ﬁﬁ:.@ =

- (39)

# (144 (ﬁl/fﬂ-ﬁn,ﬂ\}/ (et ra fa/) Wzézar

/,/



—-gefapiotyraisapyi o)

.....

:—gé[éﬂ sl fJLCaI/)f (/—m‘)f-);&/mc.frl)(axlf,a:v‘rﬁ , | &

f(%‘:zd)(*fh}/fz).&:[y;a«jﬂ $om Ui (/- ﬂbjlf -

-2a] ey o E
(s le2628) (08 m_r,:,[j? e

Equations (39) and (40) can be expressed as the sum of two- te:ms, R
one secular and the other periodic in {. By expresaing | |

Gl SA = ;‘ﬁ‘r?/-—;ﬁ%éf SRR R

Gl = font

cafi/f,;f =fmale il

Gl =grsasclepanl



equations (39) and (40) beconé
F=-2eGhrissalefstof foale conl)gi €™

Gt psigag)fe”T

]Q # (/- a’-54%245)

7[/ =l (/- L=247+ L00 } -
fe =z A (3-64-47)

Ve z(mf) A (/244647 7A™ “aiu)

7[ /{,,jf) L (= r2 2Pl pa e ) N

/ ) (Sraredrotiea f/.L)
/ = ‘4 (/—r20%0%r 24+ _/L_)

= ==Z (z-arsa-za’rsy ,A)

i ——-/ {/"JlfJ“/)—éA—A wafr/ 240" .4) T
i - 4 A (-244 -/AA-—.Z/A f/]./L -f,aA. -t ) .'

Coooa)

(42)



Substituting equations (38), (41) and (42) in equations (7) and (8)

one obtains . ' -

di = /. Ze ]c /_c-:,zz /{M /z{ 5‘»¢/7,{&m@4e‘?{ (43) :

o et stpentife ™

Therefore the solution of equation (30) is

2L =7 )

/4

vhere L and 4 are given by equations (h}) and (L4).

Taking +he values aversged over one period the results are :

247
dT ‘—-—/- 6(/- -mu)e. ;,,
A"V‘ : ‘ - o
‘/L \‘;': .4 -247
= Zéﬂ. (/uuz rm 22 m)e ;’,
AV# - ‘ ‘ S j--; ; | o
N

(4k)

o e - e - A et A Al Ry S TS T A w ¢ BT D W ma s R PP R R AW,
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Therefore the £irst approximation of q;, is

Using these average values in order to obtain a first approximation
40 the solution one obtains

247 3

A — 3 2 .

=g €A (/+av2r2L)- & o

Performing the integraiion the result I3

7= g

(7 [/-—;364(/*‘4'4"‘49 (/- 8-‘24’);/‘/‘_"‘ (‘6).

Z/ ";/C’ﬁ[/ 6 (/-.4-5‘4-}4)(/-6 )iv/ ] ' X .

-rA , "y 7-2¢ (/—A‘J‘A S )(/- CM)}Z/ ] (47)

Beferripg to the definitions of q, qi, Qo1 Z\ and '!"L‘,' the‘ﬁ.rst,:.._n ‘- o
approxiﬁate solution of the relativistic damped oscillator is o

VI

.t - .
. \\\‘ ..

B . L .. : .t-u T ) L
. . .'l"-- i II .

R s Tan P BRI AR

(48)

an e
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e e

wWhere

A= ;j: €A (/mm +4 ) /-e "mj

B= -—_6 (/-JL‘J“/L ~2/1 )(/- ﬁ

The motion as described by equation (48) is a relativistic
damped oscillatory motion. Since the relativistic amplitude coeffi-
cient A is always positive the damping of the amplitude here is less

effective than that of a corresponding Newtonian damped oscillator.
The frequency is constant. It is to be noted that the relativistic

phase angle shift is determined by the value of the relativistic phase .
coefficient B. The difference of phase angles between the

relativistic and the Newtonian damped oscillators is determined by
the value of (1-A°-5A%-3A%). If 1-A%-5A%-3A° = 0, the phase angle of

 the Telstivistic oscillator equals that of the Newtonien oscillator. ..

The phase angle of the relativistic oscillator is larger or smaller

| than that of the Newtonian one according to l-A"’-sA‘-jl\e < 0 or
‘1-A_‘2-5A4-3A6 > 0 respectively. ‘

VI. * VERIFICATION OF SOLUTIONS

The ultimate nature of tha'relativistic oscillatory motion is
concisely revealed by equation (48). The relétivistic effect upon.
the‘amp.ﬁtude end the relativisiic phase shift are clearly exhibited.
The numerical calculations oz equation (48) for P = 0.1, &= 0.25
agree with those given by Mitchell and Pope‘a) in the range where their.

‘18



solution is valid. It can be shown that the solution represented by
equation (48) meets the limiting conditions imposed. In the abéence
of relativistic effect, i.e., ¢ = 0, the relativistic amplitude |
coefficient A and relativistic phase coefficient B become zero.-

Accordingly, equation (48) reduces to

ndo.— & ,[“C‘JC/‘*) C 1L Ser (/~<%) 8] o ue

which is known as the standard solution for Newtonian damped oscillator.
It elso reduces to the solution for the undemped relativistic harmonic

oscillatory m:;tion, equation {28), as o becomes vanishingly small. Or

more concisely équations ('w)ve.nd (49) can be expressed in the following

forms

A
: (/’ﬁf

"

'

vhere ' ‘

@ = 754-9.\_

" Such a compactness of representation permits a deeper 1insight into the
nature of:_the problenm. e o S R ,

o ) , .
'ﬂ . [

. A& o, F 3 7 "
/fdazé _L"_'_G/"L[(/"(_l" c-8 9/ : - (50)

el z 4 7
%.a.ﬁc A (144 &1[[/..(7‘3 -'.g/ L ey




This presentation also shows that the Newtonian oscillator can indeed
be considered as a close analogy as well as mathematical limit of the

relativistic oscillatory motion. Equation (48) satisfies the equation
of motion (3) subject . to the initial conditions p = 0, ¢ = 1 when

* t = O to within a quantity of the order of ¢. The solution may be
carried out to any desired degree of accuracy in terms ofhigherorders

of parameter ¢ by use of the same method.‘
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